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Abstract
It is shown that the ground-state energy of heavy atoms is, to leading order,
given by the non-relativistic Thomas–Fermi energy. The proof is based on
the relativistic Hamiltonian of Brown and Ravenhall which is derived from
quantum electrodynamics yielding energy levels correctly up to order α2Ry.

PACS numbers: 02.30.−f, 02.30.Sa, 02.30.Tb, 03.65.−w, 31.15.−p
Mathematics Subject Classification: 81V45, 81V55, 35Q40, 46N50, 46N50

1. Introduction

The energy of heavy atoms has attracted considerable interest in the context of non-relativistic
quantum mechanics. Lieb and Simon [20] proved that the leading behaviour of the ground-
state energy is given by the Thomas–Fermi energy which decreases as Z7/3. The leading
correction to this behaviour, the so-called Scott correction was established by Hughes [14, 15]
(lower bound) and Siedentop and Weikard [24–28] (lower and upper bound). In fact even the
existence of the Z5/3-correction conjectured by Schwinger was proven [4–12]. Later these
results were extended in various ways, e.g., to ions and molecules.

Nevertheless, from a physical point of view, these considerations are questionable, since
large atoms force the innermost electrons on orbits that are close to the nucleus where the
electrons move with high speed which requires a relativistic treatment. Our main goal in this
paper is to show that the leading energy contribution is unaffected by relativistic effects, i.e.,
the asymptotic results of Lieb and Simon [20] remain also valid in the relativistic context,
whereas the question mark behind the quantitative correctness of the other corrections persists.

Sørensen [23] took a first step in this direction. He considered the Chandrasekhar multi-
particle operator and showed that the leading energy behaviour is given by the non-relativistic
Thomas–Fermi energy in the limit of large Z and large velocity of light c. Nevertheless,
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a question from the physical point of view remains: although the Chandrasekhar model is
believed to represent some qualitative features of relativistic systems, there is no reason
to assume that it should give quantitative correct results. Therefore, to obtain not only
qualitatively correct results it is interesting, in fact mandatory, to consider a Hamiltonian
which—as the one by Brown and Ravenhall [2]—is derived from QED such that it yields the
leading relativistic effects in a quantitative correct manner.

2. Definition of the model

Brown and Ravenhall [2] describe two relativistic electrons interacting with an external
potential. The model has an obvious generalization to the N-electron case. The energy
in the state ψ is defined as

N∧
ν=1

(H 1/2(R3) ⊗ C
4) → R

ψ �→

ψ,


 N∑

ν=1

(Dc,Z − c2)ν +
∑

1�µ<ν�N

|xµ − xν |−1


 ψ




(1)

where

Dc,Z := α · c

i
∇ + c2β − Z| · |−1

is the Dirac operator of an electron in the field of a nucleus of charge Z. As usual, the four
matrices α1, . . . , α3 and β are the four Dirac matrices in standard representation. We are
interested in the restriction E of this functional onto QN := ∧N

ν=1(H
1/2(R3) ⊗ C

4) ∩ HN

where

HN :=
N∧

ν=1

H, (2)

the underlying one-particle Hilbert space is

H := [χ(0,∞)(Dc,0)](L
2(R3) ⊗ C

4). (3)

Note that we are using atomic units in this paper, i.e., me = h̄ = e = 1.
As an immediate consequence of the work of Evans et al [3] this form is bounded from

below, in fact it is positive [29, 30], if κ := Z/c � κcrit := 2/(π/2 + 2/π). (In the following,
we will assume that the ratio κ ∈ [0, κcrit) is fixed.) According to Friedrichs, this allows us to
define a self-adjoint operator Bc,N,Z whose ground-state energy

E(c,N,Z) := inf σ(Bc,N,Z) = inf{E(ψ)|ψ ∈ QN, ‖ψ‖ = 1} (4)

is of concern to us in this paper. In fact, denoting by ETF(Z,Z) the Thomas–Fermi energy of
Z electrons in the field of nucleus with atomic number Z and q = 2 spin states per electron
(see equations (17) and (18) for more details), our main result is

Theorem 1.

E(Z/κ,Z,Z) = ETF(Z,Z) + o(Z7/3).

This result, given here for the neutral atomic case, has obvious generalizations to ions
and molecules. To keep the presentation short we refrain from presenting them here, as their
treatment follows the same strategy.
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The remaining paper is structured as follows: first we show how the treatment of the
Brown–Ravenhall model can be reduced from Dirac spinor (4-spinors) to Pauli spinors
(2-spinors). In section 3 we prove the upper bound corresponding to theorem 1 by rolling
it back to Lieb’s upper bound in the non-relativistic case [17]. Section 4 reduces the lower
bound to Sørensen’s lower bound [23]. Finally, in the appendix we show that the correlation
estimate using the exchange hole yields a pointwise lower bound with uniform error of order
Z. This is interesting in itself since it allows us to estimate the error purely by the particle
number not using any kinetic energy.

We now indicate how to reduce to Pauli spinors. To this end, we parameterize the allowed
states: any ψ ∈ H can be written as

ψ :=

Ec(p̂)+c2

Nc(p̂)
u

cp̂·σ
Nc(p̂)

u


 (5)

for some u ∈ h := L2(R3) ⊗ C
2. Here, σ are the three Pauli matrices,

p̂ := −i∇, Ec(p) := (c2p2 + c4)1/2, Nc(p) := [2Ec(p)(Ec(p) + c2)]1/2.

In fact, the map

	 : h → H

u �→
(

	1u

	2u

)
:=


Ec(p̂)+c2

Nc(p̂)
u

cp̂·σ
Nc(p̂)

u


 (6)

embeds h unitarily into H and its restriction onto H 1(R3) ⊗ C
2 is also unitary mapping to

H ∩ H 1(R3) ⊗ C
4 [3].

It suffices to study the energy as a function of u,

E ◦ (⊗N
ν=1 	

)
:

N∧
ν=1

h → R. (7)

The one-particle Brown–Ravenhall operator Bγ for an electron the external electric
potential of a point nucleus acting on Pauli spinors is then

Bc,Z := Ec(p̂) − Zϕ1 − Zϕ2, (8)

where we have split the potential into

ϕ1 := 	∗
1| · |−1	1, ϕ2 := 	∗

2| · |−1	2. (9)

As we will see, the first part ϕ1 contributes to the non-relativistic limit whereas the second part
turns out to give energy contribution that does not even affect the first correction term.

3. Upper bound

3.1. Coherent states

The upper bound will be given by choosing a trial density matrix in the Hartree–Fock functional
for the Brown–Ravenhall operator. To this end, we introduce spinor valued coherent states.

Given any function f ∈ H 3/2(R3) and an element α = (p, q, τ ) of the phase space

 := R

3 × R
3 × {1, 2}, we define coherent states in h as

Fα(x) := (ϕp,q ⊗ eτ )(x) := f (x − q) exp(ip · x)δτ,σ , (10)
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where x = (x, σ ) ∈ R
3 × {1, 2} and the vectors eτ are the canonical basis vectors in C

2

(see [3, 17]). We will pick f depending on a dilation parameter. More specifically, we will
choose

f (x) := gR(x) := R−3/2g(R−1x) (11)

where R := Z−δ with δ ∈ (1/3, 2/3) and g ∈ H 3/2, spherically symmetric, normalized, and
with support in the unit ball.

The natural measure on 
 counting the number of electrons per phase space volume in
the spirit of Planck is

∫



d̄�(α) := (2π)−3
∫

dp
∫

dq
∑2

τ=1. The essential properties needed
are the following. For A ∈ L1(
, d̄�)

γ :=
∫




d̄�(α)A(α)|Fα〉〈Fα| (12)

is a trace class operator and

0 � A � 1 =⇒ 0 � γ � 1 (13)

tr γ =
∫




d̄�(α)A(α). (14)

Using 	 we can lift any such operator γ to an operator on H

γ	 := 	γ	∗. (15)

We will pick

A(α) := χ{(ξ,x)∈R
6|ξ2/2−VZ(x)�0}(p, q) (16)

where VZ := Z/| · | − | · |−1 ∗ ρTF; here ρTF is the unique minimizer of the Thomas–Fermi
functional

ETF(ρ) :=
∫

R
3

[
3

5
γTFρ(x)5/3 − Z

|x|ρ(x)

]
dx + D(ρ, ρ) (17)

where, for fermions with q spin states per particle, γTF := (6π2/q)2/3h̄2/(2m), i.e., in our units,
γTF = (3π2)2/3/2. Note that

∫
d̄�(α)A(α) = Z [20]. Note also that VZ(q) := Z4/3V1(Z

1/3q)

(see also [13, 20]). Note also that the minimal energy ETF(N,Z) fulfils the scaling relation

ETF(N,Z) = ETF(N/Z, 1)Z7/3. (18)

Note that we could restrict the minimization to
∫

ρ � N without any problem. For N � Z

there would be no change in the minimizer; for N < Z we would get a different minimizer.
For notational convenience we will merely consider the neutral case N = Z in the following.

3.2. Upper bound

We begin by noting that the Hartree–Fock functional—with or without exchange energy—
bounds E(c,N,Z) from above. To be exact we introduce the set of density matrices

SN := {γ ∈ S1(h) | Ec(p̂)γ ∈ S1(h), 0 � γ � 1, tr γ = N}, (19)

where S1(h) denotes the trace class operators on h.

EHF : SN → R

γ �→ tr[(Ec(p̂) − c2 − Z/|x|)γ	] + D
(
ργ	

, ργ	

) (20)

where, as usual, ργ is the density associated with γ and D is the Coulomb scalar product.
By the analogon of Lieb’s result [16, 18] (see also [1])—which trivially transcribes from the
Schrödinger setting to the present one—we have for all γ ∈ SN

E(c,N,Z) � EHF(γ ). (21)
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3.2.1. Kinetic energy. By concavity we have

Ec(p) − c2 � 1
2 p2 (22)

which implies that the Brown–Ravenhall kinetic energy is bounded by the non-relativistic one,
i.e., for all γ ∈ SN with −�γ ∈ S1(h)

tr[(Ec(p̂) − c2)γ ] � tr
(− 1

2�γ
)
. (23)

Inserting our choice of γ (see equations (10), (11), (12) and (16)) turns the right-hand side into
the Thomas–Fermi kinetic energy modulo the positive error Z‖∇g‖2R−2 (see [17, formula
(5.9)]), i.e.,

tr[(Ec(p̂) − c2)γ ] � 3

5
γTF

∫
ρ

5/3
TF (x) dx + ZR−2‖∇g‖2. (24)

3.2.2. External potential. Since −Z tr(ϕ2γ ) is negative, we can and will estimate this term
by zero. This estimate will be good, if this term is of smaller order. Although logically
unnecessary for the upper bound, it is, for pedagogical reasons, interesting to see that ϕ2 does
indeed not significantly contribute to the energy, if γ is chosen as above. Moreover, the proof
will be also useful for the proof of lemma 2.

Lemma 1. For our choice of γ = ∫



d̄�(α)|Fα〉〈Fα| and δ ∈ (1/3, 2/3) we have

0 � Z tr(ϕ2γ ) � kZ

∫



d̄�(α)A(α)

∫∫
dξ dξ′ c

2|ξ||ξ′||F̂α(ξ)||F̂α(ξ′)|
|ξ − ξ′|2Nc(ξ)Nc(ξ

′)
= O(Z4/3+δ). (25)

(In the following—throughout the paper—we use the letter k for a constant independent of
c,N,R or Z.)

Proof. We begin by estimating the expectation of ϕ2 in a coherent state:

0 � (Fα, ϕ2Fα) � k

∫∫
dξ dξ′ c

2|ξ||ξ′||F̂α(ξ)F̂α(ξ′)|
Nc(ξ)|ξ − ξ′|2Nc(ξ

′)

� kc−2R−3
∫∫

dξ dξ′ |ĝ(ξ)ĝ(ξ′)|
|ξ − ξ′|2 |ξ + Rp||ξ′ + Rp| � kc−2R−3(1 + R|p| + R2|p|2). (26)

Here, we used that Nc(ξ) �
√

2c2 and, in the last step, that

|ĝ(ξ)ĝ(ξ′)|
|ξ − ξ′|2 [|ξ||ξ′| + |ξ| + |ξ′| + 1]

is integrable in ξ and ξ′ because g ∈ H 3/2(R3). Thus we get

0 � Z tr(ϕ2γ ) = Z

∫
d̄�(α)A(α)(Fα, ϕ2Fα)

� k
Z

c2R3

∫
d̄�(α)A(α)(1 + R|p| + R2|p|2)

� k
Z

c2R3

{
Z + R

∫
dq[Z4/3V1(Z

1/3q)]2 + R2[Z4/3V1(Z
1/3q)]5/2

}

= O(Z3δ + Z2/3+2δ + Z4/3+δ). (27)
�
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Lemma 2. For our choice of γ and δ ∈ (1/3, 2/3) we have
∣∣Z tr[(| · |−1 − ϕ1)γ ]

∣∣ � kZ

∫
d̄�(α)A(α)

×
∫∫

dξ dξ′

|ξ − ξ′|2
(

1 − (Ec(ξ) + c2)(Ec(ξ
′) + c2)

Nc(ξ)Nc(ξ
′)

)
|F̂α(ξ)||F̂α(ξ′)|

= O(Z5/3+δ). (28)

Proof. We first note that∣∣∣∣1 − (Ec(ξ) + c2)(Ec(ξ
′) + c2)

Nc(ξ)Nc(ξ
′)

∣∣∣∣ � |3Ec(ξ)Ec(ξ
′) − c2(Ec(ξ) + Ec(ξ

′)) − c4|
Nc(ξ)Nc(ξ

′)
. (29)

Then, noting that Ec(ξ) − c2 � c|ξ|, we obtain∣∣∣∣1 − (Ec(ξ) + c2)(Ec(ξ
′) + c2)

Nc(ξ)Nc(ξ
′)

∣∣∣∣ � 3c2|ξ||ξ′| + 2c3|ξ + ξ′|
Nc(ξ)Nc(ξ

′)
� 3c2|ξ||ξ′| + 2c3|ξ + ξ′|

2c4
. (30)

Using this last equation, we estimate∣∣∣∣
(
Fα,

(
1

| · | − ϕ1

)
Fα

)∣∣∣∣ � k

∫∫
dξ dξ′

|ξ − ξ′|2
(

1 − (Ec(ξ) + c2)(Ec(ξ
′) + c2)

Nc(ξ)Nc(ξ
′)

)
|F̂α(ξ)||F̂α(ξ′)|

� k

∫
R

6
dξ dξ′ |ĝR(ξ − p)ĝR(ξ′ − p)|

|ξ − ξ′|2 (c−2|ξ||ξ′| + c−1(|ξ| + |ξ′|))

� kc−2R−3
∫

dξ

∫
dξ′ |ĝ(ξ)ĝ(ξ′)|

|ξ − ξ′|2 (|ξ + Rp||ξ′ + Rp| + cR|ξ + Rp|)

� kc−2R−3
∫

dξ

∫
dξ′ |ĝ(ξ)ĝ(ξ′)|

|ξ − ξ′|2 (|ξ||ξ′| + R|p||ξ| + |Rp|2 + cR|ξ| + cR2|p|)

� kc−2R−3(1 + R|p| + R2|p|2 + cR + cR2|p|). (31)

Thus

Z| tr[(| · |−1 − ϕ1)γ ] � Z|
∫




d̄�(α)A(α)(Fα, (| · |−1 − ϕ1)Fα)|

� kZ

∫
d̄�(α)A(α)

×
∫∫

dξ dξ′

|ξ − ξ′|2
(

1 − (Ec(ξ) + c2)(Ec(ξ
′) + c2)

Nc(ξ)Nc(ξ
′)

)
|F̂α(ξ)||F̂α(ξ′)|

� k(Z3δ + Z2δ+2/3 + +Zδ+4/3 + Z2δ + Zδ+5/3) (32)

which yields the desired estimate. �

3.2.3. The electron–electron interaction. We will roll back the treatment of the electron–
electron interaction to the treatment of the nucleus–electron interaction.

Lemma 3. For our choice of γ and δ ∈ (1/3, 2/3) we have

D
(
ργ	

, ργ	

) − D(ργ , ργ ) = O(Z5/3+δ), (33)

where ργ is the density of γ and ργ	
is the density of γ	.

Proof. We have∣∣F[(
ργ + ργ	

) ∗ | · |−1
]
(ξ)| �

√
2/π‖ργ + ργ	

‖1|ξ|−2 = 23/2π−1/2Z|ξ|−2. (34)
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Now,∣∣D(
ργ	

, ργ	

) − D(ργ , ργ )
∣∣ = ∣∣D(

ργ	
− ργ , ργ	

+ ργ

)∣∣
� 1

2

∣∣∣∣
∫

R
3

(
ργ (x) − ργ	

(x)
)[(

ργ + ργ	

) ∗ | · |−1
]
(x) dx

∣∣∣∣
� 1

2

∫



d̄�(α)A(α)

×
∫∫

dξ dξ′∣∣F[(
ργ + ργ	

) ∗ | · |−1
]
(ξ − ξ′)|K(ξ, ξ′)|F̂α(ξ)||F̂α(ξ′)| dξ dξ′

�
√

2

π
Z

∫



d̄�(α)A(α)

∫∫
dξ dξ′||ξ − ξ′|−2K(ξ, ξ′)|F̂α(ξ)||F̂α(ξ′)| dξ dξ′

where

K(ξ, ξ′) =
∣∣∣∣ (Ec(ξ) + c2)(Ec(ξ

′) + c2)

Nc(ξ)Nc(ξ
′)

− 1

∣∣∣∣ +
c2|ξ||ξ′|

Nc(ξ)Nc(ξ
′)

and where we used (34) in the last step. Eventually, applying lemmas 1 and 2 yields the
desired result. �

3.2.4. The total energy. Gathering our above estimates allows us to reduce the problem to
the non-relativistic result of Lieb [17].

Theorem 2. There exist a constant k such that we have for all Z � 1

E(Z/κ,Z,Z) � ETF(1, 1)Z7/3 + kZ20/9.

Proof. Following Lieb [17, section V.A.1] with the remainder terms given there (putting
R = Z−δ as in our estimate), using the remainder terms obtained in lemmas 1 through 3, and
using (24), we get

E(c,Z,Z) � EHF(γ ) � ETF(Z,Z) + O(Z1+2δ + Z
5
2 − δ

2 + Z
5
3 +δ) (35)

which is optimized for δ = 5/9 giving the claimed result. �

4. Lower bound

The lower bound is, contrary to the usual folklore, easy. As we will see, it is a corollary
of Sørensen’s [23] result for the Chandrasekhar operator and an estimate on the potential
generated by the exchange hole [21]. The exchange hole of a density σ at a point x ∈ R

3 is
defined as the ball BRσ (x)(x) of radius Rσ (x) centred at x where Rσ (x) is the smallest radius R
fulfilling

1

2
=

∫
BR

σ. (36)

The hole potential Lσ of σ is defined through

Lσ (x) :=
∫

|x−y|<Rσ (x)

σ (y)

|x − y| dy. (37)

Our second main result is the following lower bound.

Theorem 3.

lim inf
Z→∞

[(E(Z/κ,Z,Z) − ETF(Z,Z)]Z−7/3 � 0.
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Proof. Pick δ > 0 and set ρδ := ρTF ∗ g2
Z−δ . Then the exchange hole correlation bound

[21, equation (14)] implies the following pointwise estimate:

∑
1�µ<ν�N

1

|xµ − xν | �
N∑

ν=1

[ρδ ∗ | · |−1(xν) − Lρδ
(xν)] − D(ρδ, ρδ). (38)

Because of the spherical symmetry of g we can use Newton’s theorem [22] and replace ρδ by
ρTF in the third summand of the right-hand side of (38). Then, by lemma 5, we get that for all
normalized ψ ∈ QN

E(ψ) � tr[�+(|D0| − c2 − Vδ)�+]− − kNZ − D(ρTF, ρTF) (39)

where, for t ∈ R, we set [t]− := min{t, 0} and Vδ = Z/| · | − ρδ ∗ | · |−1. (We remind the
reader that k is independent of Z.)

To count the number of spin states per electron correctly, i.e., two instead of the apparent
four, we use an observation by Lieb et al [19, appendix B]. Note that

�− = U−1�+U, where U :=
(

0 1
−1 0

)
. (40)

Indeed, we have

�− = 1

2

(
1 − D0

|D0|
)

, �+ = 1

2

(
1 +

D0

|D0|
)

and

UD0U
−1 =

(
0 1

−1 0

) (
c2 cσ·p̂

cσ·p̂ −c2

)(
0 −1
1 0

)
= −D0.

We set X := (|D0| − c2 − Vδ(x))I2, and write

tr

[
�+

(
X 0
0 X

)
�+

]
−

� tr

(
�+

(
X− 0
0 X−

)
�+

)
= tr

(
�+

(
X− 0
0 X−

))

tr

(
�−

(
X− 0
0 X−

))
= tr

(
�+U

(
X− 0
0 X−

)
U

)
= tr

(
�+

(
X− 0
0 X−

))
.

Thus

2 tr

(
�+

(
X− 0
0 X−

))
= tr

(
�+

(
X− 0
0 X−

))
+ tr

(
�−

(
X− 0
0 X−

))
= 2 tr(X−). (41)

Since |D0| = Ec(p̂), we obtain

E(Z/κ,Z,Z) � 2 tr[Ec(p̂) − c2 − Vδ(x)]− − D(ρTF, ρTF) − kNZ (42)

where the last trace is spinless. This connects to Sørensen’s equation (3.2) from [23]. The
result then follows using his lower bound. �
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Appendix. L∞-bound on the exchange hole potential

We begin the appendix with the following remark: the Thomas–Fermi potential VZ :=
Z/| · | − ρTF ∗ | · |−1 can be written as

γTFρ
2/3
TF = VZ (A.1)

(see, e.g., [13]). This equation yields immediately the upper bound

ρTF(x) � (Z/γTF)
3/2|x|−3/2. (A.2)

This bound allows us to prove the following L∞-bounds on potentials of exchange holes.

Lemma 4.

‖LρTF‖∞ = O(Z).

Proof. The function
f : R+ → R

t �→ √
t

∫
|y|<1/t

|y|−1|y + (0, 0, 1)|−3/2 dy
(A.3)

is obviously continuous on (0,∞). Moreover, f (t) tends to a positive constant for t → 0 and
to 0 for t → ∞. Thus, ‖f ‖∞ < ∞.

This allows us to obtain the desired estimate:

LρTF(x) � A1(x) + A2(x), (A.4)

where

A1(x) :=
∫

|y|�1/Z

ρTF(x + y)

|y| dy �
(

Z

γTF

)3/2 ∫
|y|�1/Z

dy
|y||y + x|3/2

= (Z/γTF)
3/2Z−1/2f (|x|Z) � ‖f ‖∞γ

−3/2
TF Z (A.5)

and

A2(y) :=
∫

1
Z

�|y|�RρTF (x)

ρTF(x + y)

|y| dy � Z

∫
1
Z

�|y|�RρTF (x)

ρTF(x + y) dy � Z

2
. (A.6)

These two estimates prove the claim. �

Lemma 4 allow us already to estimate the N electron operator Bc,N,Z by the canonical one-
particle Brown–Ravenhall operator whose nuclear charge is screened by the Thomas–Fermi
potential. However, since we would like—because of mere convenience—to take advantage
of Sørensen’s result [23], we derive an estimate on Lρδ

(where ρδ := ρTF ∗ g2
Z−δ ), i.e., the

exchange hole potential of the density occurring in Sørensen’s proof.

Lemma 5.

‖Lρδ
‖∞ = O(Z).

Proof. We proceed analogously to the proof of lemma 4:

Lρδ
(x) �

∫
|y|�1/Z

ρδ(x + y)

|y| dy +
∫

1/Z�|y|�Rρδ
(x)

ρδ(x + y)

|y| dy

�
∫

dz g2
Z−δ (z)

∫
|y|�1/Z

ρTF(x − z + y)

|y| dy + Z

∫
|y|�Rρδ

(x)

ρδ(x + y) dy

�
∫

dz g2
Z−δ (z)A1(x − z) +

Z

2
� kZ (A.7)
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where we used the definition of the radius of the exchange hole from the first line to the second
line, the definition of A1 in the next step and in the last step the L∞-estimate (A.5) on A1.

�
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